
Preliminary ANN/Objectivity tests

This test shows the amount of CPU time per object needed to build a tree and search

through it versus the number of objects in the database. The data storage is managed by

objectivity.

ANN can build two kinds of trees: kd1 and bd2 (box decomposition) tree. The former

divides the space recursively splitting the sample along a single dimension; the latter, in

addition to this, divides the space in concentric boxes: the bd-tree is optimal when highly

clustered distributions of points occur. During this building phase, the recursive

subdivision of the space stops when the bucket size i.e. the maximum allowed number of

points in a box, is reached; this box is called a leaf-node. For this test the bucket size is

10 points.

From figure 1, building a bd tree takes approximately twice as much as building a kd-

tree, because of the larger amount of data analysis involved (see kd-no and bd-no trends;

no stands for “no search performed”). The two data structures are time-wise equivalent

during the search phase, instead (see kd std and bd std trends; std stands for “standard

search performed”).

Build tree and Search time

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Num Objs

T
im

e
/O

b
j

(m
s)

kd no kd std

bd no bd std

Bucket size = 10

Figure 1

I expect the search time to be O(N LogN) i.e. Time/Obj to be O(LogN). This trend

corresponds to a straight line in the plot of Figure 1, having the X axis a logarithmic

scale. This hypothesis is true with a squared correlation coefficient (R2) of 0.98 . For

larger database size I expect a slow down caused by Objectivity swapping data in

memory.

Figure 2 shows a comparison between the 3 different kinds of search algorithms

available: standard3 (std), priority4 (pri) and brute force (bf) search. The first is a

recursive search of the tree; the second searches the tree following a priority queue of the

leaf-nodes sorted by increasing distance from the query point; the third is the classical

O(N2) search algorithm.

Standard and priority searches are essentially equivalent. It is immediate the advantage

of using a tree to perform the search with respect to a brute force approach.

Search time

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Num Objs

T
im

e
/O

b
j

(m
s)

kd std kd pri
bd std bd pri
bf std

Bucket size = 10

Figure 2

The system used for the test is a Silicon Graphics Origin 2000, MIPS R 12000/12010,

with 1GB of Ram, 32KB of cache and with a 138 GB internal disk xfs mounted.

References
1 J.L. Bentley. K-d trees for semidynamic point sets. In Proc. 6th Ann. ACM Sympos. Somput. Geom.,

pages 187-197, 1990
2 S. Arya, D.M. Mount, N. Netanyahu, R. Silverman, and A.Y. Wu. An optimal algorithm for

approximate nearest neighbor searching in fixed dimensions. In Proc. 5th ACM-SIAM Sympos. Discrete

Algorithm, pages 573-582, 1994.
3 J.H. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for finding best matches in logarithmic

expected time. ACM Transactions on Mathematical Software, 3(3):209-226, 1977
4 S. Arya and D.M. Mount. Approximate nearest neighbor queries in fixed dimensions. In Proc. 4th

ACM-SIAM Sympos. Discrete Algorithm, pages 271-280, 1993.

